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The expansion and evaluation of Fourier coefficients for particular SOIU- 

tions of the generalized Hill equation are obtained by means of the 

direct solution of an infinite system of linear algebraic equations; con- 

vergence conditions iare found. The practical applicability of different 

forms of particular solutions and different methods of writing the in- 

finite system are considered. A closed expression containing only one un- 

known ~_t is derived for the characteristic equation. 

t. One of the most prevalent methods of solving the generalized I!iil 

equation 

is the representation of its particular solutions yk = ~~(7) (k = 1, 2) 
in t&e form of expansions in all possible products of the parameters em. 

‘lllese solutions are obtained by the met!lod of successive approxima- 

tions, applied directly to 7;,quation (1.1). Jtowever, in these rdcthods the 

construction of the successive approxii~~ations Ly the usual means [l-31 

generally tfo not allow us to investigate tie convergence of tlie series 

O~Jtaid for yk(T). !blow, tile metho~l of successive aJq)rosimat,ions is 

applied directly to a system of infinite algelJr;liC equations, to whirl1 

Jlquation (1.1) can 1~ reduced, to compute the expansions I’or j’k(Tj; in 

connection with this, convergence criteria are ileterr,;ineii for t!ie series 

obtained for ykf~). 

3. Let us invcsti,;atc infinite systcrils oi’ e<Illations. 7’0 coqrute yk(T) 

we must take the following eq~ressions as given. 
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The first is Floquet's formula [l] 

The second is a linear combination of Formulas (2.1) 

2j1 (T) i cD1 (T) cos VT - cP2 (T) sin w, y2 (z) = a1 (z) sin VT + @2 (r) cos VT (2.2) 

by setting p1 = - p1 = iv in (2.1). 

In (2.1), (2.2) the periodic functions Ok(~) can be represented in 

the form 

or 

@k(T) = cl;-;- ; A(q; -n/2) Ahq Sin[(n + 2q)Z + ‘p,Qq] (2.3) 
qz-_co 

@,(.t) = ck -,- i A(q, - n/2)[CkqSill(n $ 2q)Z + Skq COS (a $ 2q)T] 

q=-cc 

(chq = Akq cos cpkq, sky = A,, sin (ph.& (2.4) 

Here n is an integer designatin, n the regions of stability and in- 

stability of the solutions of Equation (1.1); the symbol is introduced 

A(q;r,s,..., t)= (1-66,,)(1-~6,,)...(1.--6,t) 
13~,=Owhenh#v 

d,, = 1 when li = v 
(2.5) 

In (l.l), (2.3), (2.4), in order to write the Fourier series we shall 

assume that 

o-, = e,, E-m = -am, Ak.--n--9= AHO> ’ ‘Pk. --n-q = JC - ‘pke (2.6) 

n I us, the unknowns will be the quantities A 

indices satisfy the inequality 
kq# Tkq' ckq' SkqS whose 

n+24>0 (2.7) 

Combining (2.3) (or (2.4)) with (2.1) (or (2.3)), we can obtain 

different expressions for ~~(1). To every one of them there corresponds 

its own infinite system of algebraic equations*. 

* The representation ,/ 

‘p,; (T) _ C,. :. 2 A (q; _ n/p) (b,,$)et (n+z9) K ~1. b&-j e-i (*-t-W) ‘1 

q=--00 
is not investigate?: it has no particular advantage. 
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Direct substitution into (1.1) shows that when the functions cDk(.r) are 

determined by (2.31, Equation (1.1) reduces to the system 

&A, = 2 A(m; q, ---q)S,m(cpm-_*+n/2)A~,: (2.8) 
m--m 

5 A(m;q,--n - q) I& (cp, - $1 + r&m +P, - $ + n/2)1 4 

tan (9, - +J = “z” 

x A (m; q, - n - q) K,, (‘pm - lpp + n/2) - r9CQrn (cp, - (1J14 
m=-CO 

(2.9) 

c = - 6,. 2N $J A(m; - n/2)A rn& sin &h -t ENfm) (2.10; 

fll=--03 

and when the functions UI~(T) are determined by (2.41, to the system 

Lqsa = fJ A (m; q , - n - d kbsm + Ppmcml 
fll=--03 

L,c,= i A(m; q , - n -- q) [rgmsm + ~~~4 
WI=--oo 

(2.11) 

c = - ha, 2N fJ A(m; -n/2)02: 2 [S,COSeN+m+CmSinEiv+ml (2.12) 

T7l=-CO 

In (2.8) to (2.12) the index k has been dropped from Akq, Tkq, ckgj 

‘kg’ C,; the hdex N stands for 

N = + [an - 1 + (- I)“] (2.13) 

‘The coefficients g,,(z), rg, yl,, Iq, aqm, p,,, yqm, K~“, Lq are de- 

rived below for every specific case. 

Systems (2.8) and (2.11) are of like nature. ‘IIlerefore, the unknowns 

A and c , s may be determined to within an arbitrary factor; usually 

we9 assum: on: of the amplitudes to be 

AT,0 =T 1 (2.14) 

The index p, is conveniently chosen from the condition /Ip,,] < lIPl 

or IfAPOl < lLpl, if p0 # p. In tl le majority of cases these conditions 

are satisfied by II,, = 0 if n # 0 and by p. = 1 if n = 0. 
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Condition (2.14) selects two equations each from the systems (2.8) to 

(2.10) and (2.11) to (2.12), corresponding to q = p,,. ‘Ihey play the role 
of characteristic equations and serve to determine ~1 and Q. 

In the process of computing A , 9 (or c , s ) we should consider that 

the characteristic equations havz be&r elimfnatzd from systems (2.8) to 

(2.10) and (2.11) to (2.12), i.e. q # pO, 7 # - n - p,,. 

The terms of the sums with indicea m = p,, and m = - n - p. entering 

on the right-hand side of (2.8), (2. ll), must be isolated, since they 

will be nonhomogeneous terms of the equations. 

System (2.8) will be regular if 

I> i A(m; pot q, -n-p,,, -n-q) 5~m((pml~~~-n~2) 1 (2.15) 
m m=--oo 

System (2.11) will be regular if 

I> $ Ah; pop q, -n-PO, -n-q) 
i~,,I+IP,,I 

I&I WI=-CC 

I> g A(m;po,q, -n-PO, -n-q) 
ITJml+l~pmI 

(2.16) 

I4nI mz__m 

If conditions (2.15), (2.16) are fulfilled, every expansion for A 

and cqJ sq, obtained by solving ( 2.8) and, respectively, (2.11) by tl!e 

method of successive approximations, will converge absolutely [4]. 

IneGualities (2.15) and (2.16) are not equally strong; for example, 

in the case 8 - 0, 

(2.16). m 

m # 0, it can be shown that (2.15) is weaker than 

Inequalities (2.15) and (2.16) give the absolute criteria for con- 

vergence. It can be proved that if (2.15) and (2.16) are fulfilled 

simultaneously then the correct convergence criterion is the weaker one 

of (2.15), (2.16). 

Below (see (5.13)), we shall find the necessary convergence criteria 

from the solutions of systems (2.8), (2.9) for the case of en decreasing 

by a geometrical progression of growth (ml. 

Comparing (5.13) with (2.15) we can convince ourselves that these 

conditions are not greatly different from each other. 

The suggested methods for computing Ye are related to Mittaker’s 
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method (see [I, p.2531). 'Ih e solution (2.2), (2.1) occupies a special 
place in them. It includes the closed characteristic equation and allows 

an independent computation of the characteristic number v and of the 

Fourier coefficient ckq, skq. 

3. Iet us study the solution (2.2), (2.4). In this case we obtain the 

system of equations ( 2.11) to (2.12) whose coefficients equal 

Here 

aqm = Kpn = Pqm (fi / 21, Pqm = - rqm = 5qm (U) (3.2) 

In solution (2.2) only one amplitude, namely Alp , can be assigned 
arbitrarily. Therefore, by selecting nlP according' to (2.ld), the 

0 
amplitude AzP should be computed from the equality 

0 

(:?.3; 

'The phase x in Equalities (3.2), (3.3) is arbitrary. The solutions of 

system (2.11), (3-l), (3.2) can be found by means of successively 

eliminating the unknowns c 

obtain the expression 
9' sQ 

from Yquations (2.11). As a result we 

L,,'cu' c,, : A (q; pn) (y,$%j,, -/ x~;;~‘+~,) 

/,,ys,, A (4; /),,) (cc,,::'+, 'I .:;:;,,(,,J 
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whose coefficients are determined by the recurrence formulas 

(kfl) 
Xqm = xq, 

A (ph.; 9) 
(k) + ~ (k) 

LPk@’ 
[ xq:“,’ xp$’ + rq:i &km 1 

- A (f.& pi, p2, . . . , Pk) [aq\k-tl’ - a$)], L,(o’ = L, 

0% 
Tclm z - Cqm (0) - 5q. -n-m(O) 

B rt? = 51m (0) - r;,, --n-m(O), *qm (O) = lqm (rt / 2) - 5q. --n--m (fi! 2: 

In (3.4), (3.5) the indices ,@k # pi if k # /; the set pk coincides 

with the set of numbers IV + 1 - n, I’! + 2 - n, . . . 

‘lhe sequence of changes in pk, depending on the index k, is arbitrary 

and is determined by the order in which c 

(2.11): CPl, SP 
9’ sQ 

are eliminated from system 

are eliminated first, then c 
1 p2) sP$ 

etc. 

In practice it is more convenient to start with the elimination of 

the cq, sq with the largest amplitudes. 

In Equalities (2.11) and (3.4), to the number q = pO there correspond 

two equations which are the last in the sequential elimination of c 
9’ sQ* 

Tlese equations play the role of characteristic equatiolls. 

From (3.4) it is evident that when 9 = p,, the right-hand sides of 

(3.4) vanishes. If APO # 0, the quantities c 
PO’ 0 

sp cannot vanish 

simultaneously (see (2.4)). Iherefore, phase 9 
PO 

is arbitrary*, and the 

characteristic equation has the form 

l 91Po 
is chosen arbitrarily; phase q2p 

0 
(as also Aqp ) should be com- 

0 
puted from (3.3). 
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There remains only one unknown v. Therefore, the solution of (3.6) 

can be sought for independently of the calculation of c , s . As an 

example, below, approximate expressions for the roots 0 2 (3:6) are de- 
rived for the. case 

I~/&*-Pz IseX. }mj= O,l,... 

In the zeroth approxirn~tion 

In the first approximation 

v2 = vo2 - 
51” 

_ 
2 Y 5, (1 t- el) ’ 

?2=1, p*=o 

v2 = Yo2 - Yg 
012 

-(l-** 
n = 2, PO = 0 

(3.7) 

(3.8) 

It is known Cl] that the Hill determinant (the determinant of system 

(2.11)) has an infinite number of roots; at the same time (1.1) cannot 

have more than two characteristic exponents. Formula (3.7) shows that 

whether one or the other of the roots of the Hill determinant appears as 

a characteristic exponent or not, depends upon the method of solving 

(1.1). 

In particular, for real T and Y(T) the characteristic numbers pk 

(k = 1, 2) of solutions (2. l), are either real or pure imaginary. The 

proof of this assertion is simple. For real T and Y(r) both yl(-r) and 

yl*(-r) will be solutions of (1. 1). Therefore, ~1 and Al* will be the 

characteristic exponents of Yquation il. 1) simultaneously, and either 

% * = ~1 or pl* = p2 = - ~11. 

The application of Equation (3.6) requires the evaluation of T +x) 
from the complicated Expression (3.2). In those cases where the series 

for Y’(T) in (1.1) ‘contains a finite number of terms, Expression (3.2) 

simplifies. Otherwise, the sums in (3.2) can be represented by use of 

known trigonometrical series (see, for example, [5, {1.445)1) in the 

form of definite integrals the evaluation of which may be simpler than 

direct summation. 

If, however, simple expressions cannot be found for the coefficients 

of (3.2). the application of expansions (3. 4) to (3.5) for computing cp, 

s9 becomes inappropriate. 

In this case, by computing v from the characteristic Squatiou (3.6), 

other solutions which lead to coefficients simpler than (3. l), (3. 2) can 
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be used instead of (2.2)) (2.4) for determining yk(r). 

4. As such a solution let us study (2. l), (2.4). In this case the co- 

efficients u. qm” pq,s Yq,* Kq” can be represented as combinations of two 

functions 

a,=A(m; --/2)[54m(“/2)+a,(n/2)1 

P,, = A (m; - n I21 I-- E,, (0) - ‘~4m (O)l 

rclm = A (m; - n / 2) E,, (0) - sqm WI 
x *,,, = A (m; --n22)[Eq,(~/2)--qm(~/2)1 

(4-i) 

tqm (4 = (Mq + kg,) P,_, sin (2 + Eq-m) - A,, sin (2 + eNfq - e~+)l - 

- 2y (n + W Pq-m ~0s (r + f~,_,) - J.,, ~0s P + e,+, - eN+m)l 

Qqm (4 = en+,, W,_, sin (x + eq- - en+,,) - kqm sin (5 + eNfq - EN+~ - EN+ 2q)l - 

- A,, [e,, sin (r + E,__, - 2EN+q) - hqm sin (r - ei~+~ - EN+~)I (4.2) 

Mq = (.n + 2qY - e. - pa. bqrn = 4x. 2N 
‘N+q’N+m 

e. + pa 

Lq = M; f 4p2 (n + 29)” + %qq [Mq + e,,+2q cos teN+2q - 2eN+q)I - ‘,:2q 

In order to find solutions of Equations (2.11), (4.1), (4.2). let us 

write system (2.11) in the form* 

a* = gq+ A (m; 0, 1) zqmam 
m=- 2N 

*29 = Lqcq, 

azq+1 = Lqsq. 

g, = aozqo + W91, 

L 
mz2q. 2m 

= A (tn; q) [x - %q, -n-ml 

Lmz2q 2m+l = A (m; dqiqm + ‘rq, -,,_,,,I 

Lmzzqfl, 2m = A (m; q) IP,, - Pq, -,,-,,,I 
Lmzzq+l, 2m+l = A@; q) [aqrn + up, -n-ml 

(4.3) 

To compute am by means of (4.3). different variations of the method 

of successive approximations can be suggested. When the regularity con- 
ditions (2.16) are fulfilled, they all lead to one and the same value of 

aq (see [41 ). However, each of them turns out to be the most suitable 

only for a specific rule of variation of the numbers z with increasing 

indices q, RL. 
9” 

l Here for brevity we assume p,, = 0. 
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As an example let us investigate two elementary cases. Let orn be a 

slowly varying sequence of numbers. In this case z 

magnitude; the quantity (I 
9’ 

equals 6 L -’ in q-ill m 

9 
is appropriately sought for in the form 

M 

zqm = tuqm, aq = 2 aqktk 
k=o 

Substituting (4.4) into (4.5) and equating the coefficients of like 

powers of t, we find 

co 03 

‘qk = g,8,, $- A (k; 0) 2 A (PI; 0, 1) uqp, 2 A (Pa; 0, $1 up,~t. 
p,=-2N 

co 

p,=-2N 

. . . 2 A (Pk; O, I) upk_lpkgpk (4.5) 

rl( =-2N 

Formulas (4.4). (4.5) give the final expression uq if we set t = 1 

for the auxiliary quantity t which occurs in them. 

Let us now assume that in magnitude grn Q XI 1111 (1 ml = 0, 1, 2, . . .). 

In this case z 
9a 

= x I’J - III in magnitude, and u 
4 

is appropriately 

sought for in the form* 
M 

Substituting (4.6) into (4.5) and equating the coefficients of t, we 

find 

2Q+1 

‘q,; = ‘,,‘k” I 2 A (n,; 0, I) v,,~)~,,~ ! 

+ . J‘ “$ ,. ,.,'Jf-Q,,( Q), + 

-v O-’ 
2 A (nl: 0, 1) Vqn&, 

n_- 2, m-z(Q+l)D(Q) 

‘1 (Q) 
l I(‘2 >‘I) 
\ I’ (C! < 0) 

Equalities (4.7) represents a set of recurrence relations which allow 

us to ccmpute the quantities b qk by their “lowest” approximations bar 

* The numbers (, and M are computed by means of Formulas (2. IO) in which 

(I and m, respectively, should be substituted for n. 
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(r < k) and by the approximations of the same order of the “previous” 

amplitudes bmk(fm/ < 1 ql). It is not difficult to apply (4.7) in practice. 

Equalities (4.6), (4.7) give the final expression for aq if we set t = 1 

in them. 

It is not difficult to see that if condition (2.14) is fulfilled the 

coefficients t depend on ffRL, SIR, ~1. and gq on anr, Ed’ P, cpu. If u is 

computed by uS?of Equation (3.6), then expansions (4.4) to (,4.7) will 

depend only on the unknown T,,. The characteristic equation of system 

(2. ll), (4. l), (4.2) can be presented in the form of two equations 

By substituting here (4.4) to (4,7) we find co, s,,, and then we com- 

pute Ye. 

5. bet us study the solutions (2. I), (2.3) and (2.2), (2.3) in order 

to find approximate expressions for Aq and Q,. Here, Equation (1. I) can 

be transformed to the system (2.3) to (2. IO) whose coefficients eUUa1 

in the case of solution (2. l), (2.3). For solution (2.2), (2.3) 

r,! -- I). I<, = I, 
‘i 

(5.2) 

and L qp iqm(7) are determined by means of (3.2). 

The coefficients of system (2.8) to ( 2.10) depend on the phases 9,. 

Therefore it is inconvenient to make use of Expression (2.3) for an 

accurate computation of yk(-r). However, for real values of the phases 

9,. when it is possible to dominate by unity all the trigonometrical 

functions occurring in (2.6) to (2. IO), Zquations (2.6) to (?. 10) allow 

us to obtain apprnximate expressions for A 
9 

and “q. 

I,et us investigate tile case for real 8,,, Ed. In this c&e, the phases 
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9, of solution (2. l), (2.3) will be real in the instability regions, and 

the phases ‘pm of solution (2.2). (2. 3) in the stability regions. There- 

fore, to evaluate relations for the stability of the solution of (1.1) 

we must use (2.2), (2.3), and for instability, (2. l), (2.3). 

To a large extent the nature of the variations of A with the increase 

of 191, depends on the coefficients 0 In’ Therefore, belzw, we study the 

approximate expressions for A 
9 

in two special cases. 

If en, IAJ = 1, 2, . . . , forms a slowly varying sequence of numbers, 

then A9 is conveniently sought for in a form analogous to (4.4). Let us 

introduce the notation 

Let us set* 

By using (2.8) we find 

For A9 we obtain 

’ GA, [ 

s(O) 

lGl‘4uI I~qoI+l-_s I 
5 (cp, - ‘p, + n / 2) - ,$, - /1 - 9) -‘lrn 

‘77X 

The quantity .S is the majorant of the right-hand sides of (2. 15). 

Inequality (5.6) takes a simple form if we assume 

(5.S) 

(3.4) 

(5.5) 

(5.6; 

l Let us recall that in solution (2. 2). (2.3) the arbitrary A,O, Q1,,, 

A*(,,, 9,zo must be calculated by using (3.3). 
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IP,m(cpm-~q+~/2~-~q,_,_~,(-cpm-cpq+~/2~l<~ (5.7) 

The interval of values of the quantity t, within the limits of which 

inequalities (5.6) have meaning, is determined with the aid of (2. 15). 

If es* /nl/ = 1, 2, . ..* forms a geometric progression, then Ag is con- 

veniently sought for in a form analogous to (4.6). 

Let us set 

Zq,n = ,Iq--miv 
w’ 

IqAq = A,, fj bq,rk+IqI (5.8) 
k-o 

Substituting (5.8) into (2.8) and equating the Coefficients of Powers 

of X, we find 

I@(-q)--I 

-i- 
i 

2 6rt k+2[m-qD(-q)] + i %, h--2lm--*D(q)l) ‘qmbmr (5.9) 
m-;-__\i nl=qD(q)-Ll 

If 

then Equalities (5.9) allow us to derive the approximate expression 

Bith known accuracy Im in (5.11) can be replaced by fl = 41x’; here, 

as p +b, the right-hand side of (5.11) is transformed to a known in- 

finite product, and 

The range of variation of t and X, within the limits 

ities (5.11), (5.12) have meaning, can be determined by 

(5.10) into (2.15). 

(5.12) 

of which inequal- 

substituting 

By analysing the subsequent terms of the series in (5.8) for the case 

of (5.10). we can find the necessary convergence criterion for the series 

in (5.8) 

(5.i3) 
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The expansions (5.8). (5.9) derived here for the amplitudes A are 

similar to the series derived in [I, 21 for the solution (2. 1)) (5.3). 

It iS not difficult to convince ourselves that (5.8), (5.9) are their 

generalizations. To see this, 

I -1 
(5.1) should be substituted into (5.9) and 

should be expanded into a series of products of the numbers 8 

Tl?en (5.9) will coincide with the corresponding results of [l, 21. I”; is 

necessary, however, to note that when computing (2. I), (3.3) in the 

stability regions corresponding to n > 2, such an expansion becomes in- 

valid since it leads to a violation of condition (2.15). Therefore, the 

expansion of yk(-r) for n = 3, derived in :21, trivially applies only in 

the instability regions. 

Let US study the approximate solutions of Equation (2.9) for the case 

of (5.10) when all the products of the form A . . . Are,. . .8, can be re- 

garded as quantities of the pth order of smallness if / 91 + . . . + 1 r/ + 
101 + . . . + [El = p. 

In accordance with this classification the numerators of the right- 

hand sides of (2.9) contain terms of ) ql t 2p, n + 4 t 2p (p = O, 1, . _.) 

orders of smallness. 

The quantities w, occurring in (2.9) are arbitrary. In particular, we 

can assume v = 0. However, the quantities v can also be chosen such 

that the right-hand sides of (2.9) have smal? magnitudes of the first or 

more orders of smallness. In this case IV, will approximate the values of 

phases q . 
9 

To derive the equations defining ly, let us equate to zero the sum of 

all terms of the qth order of smallness occurring in the numerators of 

the right-hand sides of (2.9). Then we obtain: 

for the instability regions (for solution (2. 1). (2.3)) 

for the stability regions (for solution (2.2), (2.3)) 

If in (5.14), (5. 15) we replace ‘pm by v, then (.5. 1.1), (E. li\ ;iill.also 

give the desired solutions for v~. Equations (5. 14). (5. 15) have the 
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character of recurrence relations. They permit a simple series solution. 

6. Let us study the solutions of the ordinary Hill equation, when 

e, = 0. System (2.9), corresponding to (2.2), (2.3), when ~w = 0 has the 

solutions 

‘p, = 0, cP,=G (6.1) 

Therefore, expansions (5.4), (5.5) and (5.8), (5.9), applied to solu- 

tion (2.2). (2.3). in the case of the ordinary Hill equation contain only 

the unknown v and may be regarded as final. (According to (3.3) phase 

?2q 
= 0, w/2 if gIq = w/2, 0, respectively.) 

To compute the periodic (v = 0) solutibns of the ordinary Hill equa- 

tion we can also use Expressions (2.1). (2. 3). In this case (6.1) will 

also satisfy system (2.9) and, (5.4) to (5.5), (5.8) to (5.9) will give 

the final expressions for amplitudes A . The advantage of the latter 

method of computing yk(-r) is that the zoefficients (5.1) are considerably 

simpler than the coefficients (3.2). 

7. Let us investigate the Mathieu equation. In this case 

(Xl) 

The constant C is conveniently taken inside the summation sign in 

(2.3) with the help of the inequalities 

The system (2.8), (2.9) with coefficients 

is obtained for A 
Q’ q4* 

The Mathieu equation is a special case of the ordinary Hill equation. 

However, the methods set forth in Section 6 for computing PA are not 

always convenient for solving the Mathieu equation since they lead to 

very crude estimates of the Fourier coefficients of Ye and of the 

convergence conditions. 

Therefore, to solve the Mathieu equation it is appropriate to use the 

Whittaker series introduced in [l, p.2561 which converges faster than 

(5. 4) does. 

In this case the application of infinite equations allows us to derive 

an expression for the general term of the ahittaker series, to find a 
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quantitative estimate for their regions of convergence, and, to obtain 

convenient estimates for the quantities A 
Q’ %’ 

BY assuming 

-4, = bq,, + A (q; ‘3 aq 
e1 cos (‘P1.*ignq- %I e1 cos (‘P*.signq - ‘Pl..signq) 

Il.signp - I 
. . . 

e.sign c/ 

01 cos (cp, --‘P,_1.sign q )- . . zq (7.4) 

we find for cq the system of equations 

ao= i. 
=q = aq-l.8tgn q + zq~q+14gn Q’ 

01” CoSa (Cp, - ‘PO+, .sim7 q ) 
zq = - 

‘q’q+l.sign q 
(7.5) 

System (7.5) decomposes naturally into two independent parts, corre- 

sponding to q > 0 and q < 0. By virtue of (2.8). only the system corre- 

sponding to q > 0 turns out to be infinite. We shall find its solution. 

If in (7.5) we set q > 0, then we obtain an irregular system of equa- 

tions to which the general methods stated in [41 do not apply. Neverthe- 

less, the solution of (7.5) for q > 0 can be obtained with the aid of 

expansions of type (5.4) 

Substituting (7.6) into (7.5) we find 

PC’ I I-),< __,-I I 

LI .-=a 4 k,, -i- A tk; 0) i UT,, 2 >; up2. x cTl,k (7.i) 

PI=1 p,=~ 1 p/( 7.7 , 

It is not difficult to show that series (7.6). (7.7) converge abso- 

lutely if 

Here for (1 we obtain 
q 

I a,, / <(I --- .,‘).I. 

Expansions (7.6), (7.7) represent a generalization of the !Vhittaker 

series. Inequality (7.8) gives the sufficient condition for their abso- 

lute convergence. 

Let us consider the approximate solutions of system .(2.9). By repeating 
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the derivation of Equations (5.14) for y,. we get 

(i.lO) 

From (7. 10) it is obvious that (pq j, 1 - ‘p, is a small quantity tending 
to zero as q - m. Therefore, in contrast to the general case (see Section 

5), Expressions (2.1). (2.3) are suitable for the computation of both 
the unstable and the stable solutions of the Mathfeu equation. From (7.9) 
we can also derive that 

when q - fo and v has pure imaginary values. 

8. One of the basic aims of the present paper is to obtain for the 
solutions of the generalized Hill equation simple expansions which allow 
direct practical application. Such desired expansions were obtained in 
Sections 3, 4, 6, depending only on the characteristic number & 

If (3.6) allows a simple computation of v, the use of series (3.4), 

(4.4) to (4.7)) (5.4j, (5..8) presents no difficulty. 

If, however, it is not possible to solve (3.6) by simple means, then 
we miist use other methods to compute Ye. In particular, the method - 
suggested in 113 and applied in 121 - of the formal expansion of all 
quantities in terms of products of the numbers Om, can be useful. In this 
case conditions (2.15), (2.16), (5.13) and inequalities (5.6). (5.11) 
make it possible to find the accuracy of the method of successive approxi- 
mations, When solving a truncated system of equations, inequalities (5.6), 
(5. ll), (7.9) allow us to estimate the errors which arise from the 
trucnation of the infinite system. 

In conclusion let us note that the results of Sections 4 to ‘7 are 
given for po = 0 (see (2.14)). Therefore, we must be cautious when apply- 
ing them to the case n = 0. 

The author thanks the review editor K.G. Valeev for much help and 

valuable advice. 
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